1.A.3.a ii (i) - Domestic Civil Aviation: LTO

Last updated on 19 Mar 2019 13:05 (cf. Authors)

Short description

NFR-Code Name of Category Method AD EF Key Category 1
1.A.3.a ii (i) Domestic Civil Aviation: LTO T1, T2, T3 NS, M CS, D, M no key category

In NFR category 1.A.3.a ii (i) - Domestic Civil Aviation: LTO emissions from domestic flights between German airports occuring during LTO stage (Landing/Take-off: 0-3,000 feet) are reported.
In the following, information on sub-category specific AD, (implied) emission factors and emission estimates are provided.

Method

Actitvity Data

Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.

Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Jet Kerosene 31.08 31.35 30.62 29.99 29.77 29.24 29.59 29.93 29.92 29.31 29.50 30.23 30.59 30.53 30.18 29.48 29.49 30.11 29.66 29.25
Aviation Gasolinea 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

source: Knörr et al. (2018c) [2] &: Gores (2018) [3]
a assumption: all aviation gasoline used for domestic flights below 3,000 feet of altitude

As explained above, the use of aviation gasoline is - due to a lack of further information - assumed to entirely take place within the LTO-range.
As soon as better data allows the split of the consumption of aviation gasoline onto domstice and international flights as well as LTO and Cruise, Germany will accordingly adjust its inventory.

Table 2: annual LTO fuel consumption for domestic flights, in terajoule
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Jet Kerosene 8,773 9,318 10,293 9,858 9,362 9,042 8,612 9,259 9,493 9,498 9,705 9,521 9,585 9,656 8,970 7,889 7,985 8,531 8,597 8,097
Aviation Gasoline 2,438 1,142 1,120 984 823 766 659 698 653 611 638 594 568 614 558 496 472 553 407 403

source: Knörr et al. (2018c) [2] &: Gores (2018) [3]

Emission factors

All country-specific emission factors used for emission reporting were basically ascertained within UBA project FKZ 360 16 029 (Knörr, W., Schacht, A., & Gores, S. (2010)) [1] and have since then been compiled, revised and maintained in TREMOD AV [2].

Furthermore, the newly implemented EF(BC) have been estimated via f-BCs as provided in the 2016 EMEP/EEA Guidebook [4], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion".

For more details, see superordinate chapter on 1.A.3.a - Civil Aviation.

Table 3: Country-specific emission factors, in kg/TJ
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Kerosene
NH3 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
NMVOC 19.7 20.0 18.4 20.6 22.2 22.8 22.2 19.7 17.8 18.9 19.8 22.4 23.2 19.4 20.2 22.3
NOx 301 332 301 286 285 289 299 310 315 318 323 323 321 326 332 334
SOx 25.1 15.2 8.46 6.34 5.92 5.50 5.07 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65
PM1 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97
BC2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
CO 182 184 238 254 255 248 240 226 217 215 210 212 214 206 201 199
Aviation gasoline
NH3 NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE
NMVOC 181 182 179 177 175 174 177 178 180 186 186 186 184 183 187 187
NOx 279 275 284 292 298 301 291 287 283 263 262 261 266 270 257 257
SOx 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
PM 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
BC 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
TSP3 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
CO 14,951 15,047 14,832 14,644 14,479 14,421 14,648 14,750 14,853 15,354 15,384 15,406 15,269 15,174 15,502 15,503
Pb4 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481 9,481

1 EF(TSP) also applied for PM10 and PM2.5 (assumption: > 99% of TSP consists of PM2.5)
2 estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in [4]
3 also including TSP from lead: EF(TSP) = 1.6 x EF(Pb) - see road transport
4 calculated from the average lead content of AvGas 100 LL (low-lead) of 0.56 g Pb/liter

NOTE: For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

Table 4: Tier1 emission factors for heavy-metal and POP exhaust emissions
Pb Cd Hg As Cr Cu Ni Se Zn B[a]P B[b]F B[k]F I[…]p PAH 1-4 PCDD/F
[g/TJ] [mg/TJ] [µg/TJ]
Kerosene NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE
Aviation gasoline 9,481 0.005 0.200 0.007 0.145 0.103 0.053 0.005 0.758 126 182 90 205 602 NE

Trend discussion for Key Sources

NFR 1.A.3.a ii (i) - Domestic Civil Aviation - LTO is no key source.

Where sulphur oxides emissions are dominated by jet kerosene due to the amount of fuel used, the majority of carbon monoixide stems from the consumption of avgas given the much higher emission factor applied to this fuel.

Lead emissions on the other hand, with no emission factor available for jet kerosene, are only calculated for avgas.

Recalculations

Activity data

First of all, the average fuel use per LTO cycle has been revised within TREMOD Aviation to keep in line with the EMEP/EEA Guidebook 2016 and the regularly updated data sets provided to the EEA by Eurocontrol.

Table: Revised average fuel consumption per LTO cycle
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Submission 2019 671 637 635 629 588 581 565 574 590 593 592 629 631 616 609 582 578 631 626
Submission 2018 789 736 745 737 692 679 650 657 677 681 675 712 713 700 692 662 658 712 711
absolute change -118 -99 -110 -108 -104 -98 -86 -83 -87 -88 -83 -84 -82 -83 -83 -80 -80 -81 -85
relative change -15.0% -13.4% -14.8% -14.6% -15.0% -14.4% -13.2% -12.7% -12.8% -12.9% -12.3% -11.7% -11.5% -11.9% -12.0% -12.1% -12.1% -11.4% -12.0%

This revision resulted in a recalculation of the percentual shares of kerosene consumed during LTO within TREMOD AV.

Table 5: Revised percentual share of kerosene consumed during L/TO for domestic flights, in %
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Submission 2019 31.08 31.35 30.62 29.99 29.77 29.24 29.59 29.93 29.92 29.31 29.50 30.23 30.59 30.53 30.18 29.48 29.49 30.11 29.66
Submission 2018 34.12 32.86 32.09 31.34 31.29 30.75 31.06 31.16 31.16 30.52 30.52 31.11 31.36 31.45 31.12 30.43 30.39 30.85 30.52
absolute change -3.04 -1.51 -1.47 -1.35 -1.51 -1.50 -1.47 -1.24 -1.24 -1.21 -1.02 -0.88 -0.77 -0.92 -0.94 -0.95 -0.89 -0.74 -0.86
relative change -8.92% -4.59% -4.58% -4.32% -4.83% -4.89% -4.74% -3.97% -3.98% -3.96% -3.33% -2.84% -2.47% -2.92% -3.02% -3.11% -2.94% -2.41% -2.83%

Hence, the amount of kerosene allocated to sub-category 1.A.3.a ii (i) had to be revised accordingly:

Table 6: Revised kerosene consumption in 1.A.3.a ii (i), in terajoule
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Submission 2019 8,773 9,318 10,293 9,858 9,362 9,042 8,612 9,259 9,493 9,498 9,705 9,521 9,585 9,656 8,970 7,889 7,985 8,531 8,597
Submission 2018 10,261 10,531 11,720 11,207 10,735 10,354 9,833 10,519 10,812 10,827 10,976 10,701 10,737 10,899 10,130 8,946 9,064 9,611 9,701
absolute change -1,488 -1,212 -1,427 -1,349 -1,373 -1,312 -1,222 -1,260 -1,319 -1,330 -1,271 -1,181 -1,152 -1,243 -1,160 -1,057 -1,079 -1,080 -1,104
relative change -14.5% -11.5% -12.2% -12.0% -12.8% -12.7% -12.4% -12.0% -12.2% -12.3% -11.6% -11.0% -10.7% -11.4% -11.5% -11.8% -11.9% -11.2% -11.4%

Emission factors:

Several country-specific EF values for have been revised within TREMOD AV during the ad-hoc revision of the model.
Here, especially for NMVOCs and CO from jet kerosene erroneous data was replaced for earlier years.

Table 7: Revised emission-factor values, in [kg/TJ]
1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
values applied to jet kerosene
Non-methane volatile organic compounds - NMVOC
Submission 2019 19.73 20.01 18.39 18.28 19.50 20.72 21.77 20.63 22.20 22.79 22.15 19.68 17.82 18.94 19.81 22.40 23.21 19.39 20.17
Submission 2018 47.22 27.36 21.04 18.61 19.36 18.62 19.34 20.12 19.36 21.00 19.95 17.27 15.57 16.68 17.04 17.79 18.62 15.38 14.40
absolute change -27.49 -7.35 -2.66 -0.33 0.14 2.10 2.43 0.51 2.84 1.79 2.20 2.41 2.25 2.26 2.77 4.61 4.59 4.01 5.77
relative change -58% -27% -13% -2% 1% 11% 13% 2.53% 15% 9% 11% 14% 14% 14% 16% 26% 25% 26% 40%
Nitrogen oxides - NOx
Submission 2019 300.54 332.06 300.51 301.35 295.54 289.37 288.89 285.93 285.18 288.54 298.72 309.55 315.35 318.24 323.03 322.73 321.18 326.46 331.91
Submission 2018 272.69 266.81 280.04 279.74 273.32 266.43 264.91 260.40 258.64 260.26 270.26 280.64 284.72 283.00 285.08 288.59 288.70 296.78 299.25
absolute change 27.85 65.25 20.47 21.61 22.22 22.94 23.98 25.52 26.53 28.28 28.47 28.91 30.63 35.24 37.95 34.14 32.48 29.67 32.66
relative change 10.21% 24.46% 7.31% 7.72% 8.13% 8.61% 9.05% 9.80% 10.26% 10.87% 10.53% 10.30% 10.76% 12.45% 13.31% 11.83% 11.25% 10.00% 10.91%
Carbon monoxide - CO
Submission 2019 182.24 183.79 237.85 236.91 243.85 251.64 252.66 254.46 254.82 248.29 240.06 226.02 216.56 214.94 210.44 212.49 213.91 206.49 200.80
Submission 2018 285.18 285.32 271.82 268.77 274.98 281.03 279.51 282.56 279.33 273.29 265.25 247.37 241.58 246.62 244.56 233.41 231.53 222.13 213.33
absolute change -102.94 -101.54 -33.97 -31.86 -31.13 -29.39 -26.85 -28.10 -24.51 -25.00 -25.19 -21.35 -25.02 -31.68 -34.12 -20.92 -17.61 -15.64 -12.53
relative change -36.10% -35.59% -12.50% -11.85% -11.32% -10.46% -9.60% -9.94% -8.78% -9.15% -9.50% -8.63% -10.36% -12.85% -13.95% -8.96% -7.61% -7.04% -5.87%
values applied to avgas
Non-methane volatile organic compounds - NMVOC
Submission 2019 180.74 181.88 179.33 178.10 178.03 177.46 176.41 177.11 175.16 174.47 177.16 178.36 179.59 185.50 185.85 186.12 184.50 183.37 187.25
Submission 2018 180.74 181.88 179.33 178.10 178.03 177.46 176.41 177.11 175.16 174.47 177.16 178.36 179.59 185.50 185.85 186.12 183.36 183.36 183.36
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14 0.00 3.89
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.62% 0.00% 2.12%
Nitrogen oxides - NOx
Submission 2019 279.13 275.23 283.93 288.12 288.38 290.31 293.89 291.51 298.16 300.51 291.34 287.24 283.06 262.84 261.65 260.75 266.26 270.13 256.89
Submission 2018 279.13 275.23 283.93 288.12 288.38 290.31 293.89 291.51 298.16 300.51 291.34 287.24 283.06 262.84 261.65 260.75 270.15 270.15 270.15
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.88 -0.02 -13.25
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -1.44% -0.01% -4.91%
Particulate Matter - PM (PM2.5 = PM10 = TSP)
Submission 2019 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
Submission 2018 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Carbon monoxide - CO
Submission 2019 14,951 15,047 14,832 14,728 14,722 14,674 14,585 14,644 14,479 14,421 14,648 14,750 14,853 15,354 15,384 15,406 15,269 15,174 15,502
Submission 2018 14,951 15,047 14,832 14,728 14,722 14,674 14,585 14,644 14,479 14,421 14,648 14,750 14,853 15,354 15,384 15,406 15,173 15,173 15,173
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.17 0.34 328.48
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.63% 0.00% 2.16%

For more information on recalculated emission estimates for Base Year and 2016, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

FAQs

Why are emissions from aviation gasoline reported using a Tier 1 approach whereas for jet kerosene Tier 2a has been applied?

For reporting emissions from the cosumption of jet kerosene, the party uses an annual split factor provided by Eurocontrol to devide the total amount of kerosene used (from Energy Balances & Official oil data for the Federal Republic of Germany) onto national and international civil aviation. For aviation gasoline, such split factor does not exist. - Furthermore, the deviation of kerosene used onto flight stages LTO and Cruise has been carried out using data on numbers of take-offs from German airports provided by the German Federal Statistical Office. At the moment, such data is not available for aircraft using aviation gasoline.

On which basis does the party estimate the reported lead emissions from aviation gasoline?

assumption by party: aviation gasoline = AvGas 100 LL
(AvGas 100 LL is the predominant sort of aviation gasoline in Western Europe)1
lead content of AvGas 100 LL: 0.56 g lead/liter (as tetra ethyl lead)2

The applied procedure is similar to the one used for calculating lead emissions from leaded gasoline used in road transport. (There, in contrast to aviation gasoline, the lead content constantly declined resulting in a ban of leaded gasoline in 1997.)

On which basis does the party estimate the reported TSP emissions from aviation gasoline?

The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for lead: EF(TSP) = 1.6 x EF(Pb).
The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport.


Bibliography
1. Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.
2. Knörr et al. (2018c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) 2018 - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2018.
3. Gores (2018): Inventartool zum deutschen Flugverkehrsinventar 1990-2017, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2018.
4. EMEP/EEA, 2016: EMEP/EEA air pollutant emission inventory guidebook 2016, Copenhagen, 2017.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License