1.A.3.a ii (i) - Domestic Civil Aviation: LTO

Last updated on 12 Mar 2020 10:15 (cf. Authors)

Short description

NFR-Code Name of Category Method AD EF Key Category 1
1.A.3.a ii (i) Domestic Civil Aviation: LTO T1, T2, T3 NS, M CS, D, M no key category

In NFR category 1.A.3.a ii (i) - Domestic Civil Aviation: LTO emissions from domestic flights between German airports occuring during LTO stage (Landing/Take-off: 0-3,000 feet) are reported.
In the following, information on sub-category specific AD, (implied) emission factors and emission estimates are provided.

Method

Actitvity Data

Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.

Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Jet Kerosene 30.48 29.50 28.07 27.73 27.65 27.37 27.38 27.39 27.74 27.81 28.11 28.00 27.64 27.83 28.21 28.41 28.53
Aviation Gasoline 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

source: Knörr et al. (2019c) [2] &: Gores (2019) [3]
a assumption: all aviation gasoline used for domestic flights below 3,000 feet of altitude

As explained above, the use of aviation gasoline is - due to a lack of further information - assumed to entirely take place within the LTO-range.
As soon as better data allows the split of the consumption of aviation gasoline onto domstice and international flights as well as LTO and Cruise, Germany will accordingly adjust its inventory.

Table 2: annual LTO fuel consumption for domestic flights, in terajoule
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Jet Kerosene 8,777 8,734 8,962 8,276 8,455 8,631 8,728 8,212 8,284 8,390 8,084 7,278 7,492 7,609 7,758 7,568 7,655
Aviation Gasoline 2,438 1,142 1,120 698 653 611 638 594 568 614 558 496 472 553 407 403 389

source: Knörr et al. (2019c) [2] &: Gores (2019) [3]

Emission factors

All country-specific emission factors used for emission reporting were basically ascertained within UBA project FKZ 360 16 029 (Knörr, W., Schacht, A., & Gores, S. (2010)) [1] and have since then been compiled, revised and maintained in TREMOD AV [2].

Furthermore, the newly implemented EF(BC) have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook [4], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion".

For more details, see superordinate chapter on 1.A.3.a - Civil Aviation.

Table 3: Country-specific emission factors, in kg/TJ
1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018
Kerosene
NH3 4.00
NMVOC 29.1 30.2 30.5 32.4 33.4 33.2 33.5 36.8 37.7 38.8 39.0 40.9 41.2
NOx 290 319 276 262 289 293 295 290 299 296 306 305 296
SOx 19.7 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
PM1 2.52 2.51 2.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
BC2 1.21 1.20 1.21 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22
CO 203 201 254 262 240 234 232 238 241 246 238 238 238
Aviation gasoline
NH3 NE
NMVOC 612 622 608 616 612 622 619 621 619 618 619 614 626
NOx 126 128 125 126 124 128 127 128 127 126 127 125 129
SOx 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
PM 7.45 7.52 7.48 7.89 7.89 7.57 7.50 7.53 7.47 7.73 7.39 7.02 7.27
BC 1.12 1.13 1.12 1.18 1.18 1.14 1.12 1.13 1.12 1.16 1.11 1.05 1.09
TSP3 22.6
CO 20,728 21,069 20,855 20,973 21,326 21,339 21,463 21,389 21,513 21,555 21,468 21,944 21,388

1 EF(TSP) also applied for PM10 and PM2.5 (assumption: > 99% of TSP consists of PM2.5)
2 estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in [4]
3 also including TSP from lead: EF(TSP) = 1.6 x EF(Pb) - see road transport

NOTE: For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

Table 4: Tier1 emission factors for heavy-metal and POP exhaust emissions
Pb Cd Hg As Cr Cu Ni Se Zn B[a]P B[b]F B[k]F I[…]p PAH 1-4 PCDD/F
[g/TJ] [mg/TJ] [µg/TJ]
Kerosene NE NE NE NE NE NE NE NE NE NE NE NE NE NE NE
Aviation gasoline 9,4811 0.005 0.200 0.007 0.145 0.103 0.053 0.005 0.758 126 182 90 205 602 NE

1 calculated from the average lead content of AvGas 100 LL (low-lead) of 0.56 g Pb/liter

Trend discussion for Key Sources

NFR 1.A.3.a ii (i) - Domestic Civil Aviation - LTO is no key source.

Where sulphur oxides emissions are dominated by jet kerosene due to the amount of fuel used, the majority of carbon monoxide stems from the consumption of avgas given the much higher emission factor applied to this fuel.

Lead emissions on the other hand, with no emission factor available for jet kerosene, are only calculated for avgas.

Recalculations

Activity data

In order to keep in line with the EMEP/EEA Guidebook 2019 and the regularly updated data sets provided to the EEA by Eurocontrol, the average fuel use per LTO cycle has been updated again within TREMOD Aviation but with much smaller impact as in last year's submission.

Resulting from this revision, the percentual shares of kerosene consumed during LTO within TREMOD AV have been recalculated as shown in Table 4.

Table 4: Revised percentual share of kerosene consumed during L/TO for domestic flights, in %
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Submission 2020 30.48 29.50 28.07 27.73 27.65 27.37 27.38 27.39 27.74 27.81 28.11 28.00 27.64 27.83 28.21 28.41
Submission 2019 31.08 31.35 30.62 29.93 29.92 29.31 29.50 30.23 30.59 30.53 30.18 29.48 29.49 30.11 29.66 29.25
absolute change 4 -584 -1,331 -983 -1,038 -867 -977 -1,309 -1,301 -1,266 -887 -611 -493 -923 -839 -529
relative change 0.05% -6.26% -12.9% -10.6% -10.9% -9.1% -10.1% -13.7% -13.6% -13.1% -9.88% -7.74% -6.17% -10.8% -9.76% -6.54%

Hence, the amount of kerosene allocated to sub-category 1.A.3.a ii (i) had to be revised accordingly:

Table 5: Revised fuel consumption data, in terajoule
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Jet kerosene
Submission 2020 8,777 8,734 8,962 8,276 8,455 8,631 8,728 8,212 8,284 8,390 8,084 7,278 7,492 7,609 7,758 7,568
Submission 2019 8,773 9,318 10,293 9,259 9,493 9,498 9,705 9,521 9,585 9,656 8,970 7,889 7,985 8,531 8,597 8,097
absolute change 4 -584 -1,331 -983 -1,038 -866 -977 -1,309 -1,301 -1,266 -887 -611 -493 -922 -839 -529
relative change 0.05% -6.26% -12.9% -10.6% -10.9% -9.1% -10.1% -13.7% -13.6% -13.1% -9.88% -7.74% -6.18% -10.8% -9.76% -6.54%
Aviation gasoline
Submission 2020 2,438 1,142 1,120 698 653 611 638 594 568 614 558 496 472 553 407 403
Submission 2019 2,438 1,142 1,120 698 653 611 638 594 568 614 558 496 472 553 407 403
absolute change 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
relative change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Total fuel consumption
Submission 2020 11,215 9,876 10,082 8,974 9,108 9,242 9,366 8,806 8,852 9,004 8,642 7,774 7,964 8,162 8,165 7,971
Submission 2019 11,211 10,460 11,413 9,957 10,146 10,109 10,343 10,115 10,153 10,270 9,528 8,385 8,457 9,084 9,004 8,500
absolute change 4.39 -584 -1.331 -983 -1.038 -866 -977 -1.309 -1.301 -1.266 -887 -611 -493 -922 -839 -529
relative change 0.04% -5.58% -11.7% -9.88% -10.2% -8.57% -9.45% -12.9% -12.8% -12.3% -9.31% -7.29% -5.83% -10.2% -9.32% -6.23%

In parallel, the majority of country-specific emission factors has been revised within TREMOD AV based on information available from the 2019 EMEP/EEA Guidebook [4] and Eurocontrol's AEM model [5].
Here, among others, the EF for SO2 from jet kerosene has been replaced by new and more reliable data showing no sulphur reduction since 1990.

Furthermore, all EF applied for aviation gasoline have been revised widely based on better knowlegde but with no significant impact on the emission inventory.

Table 6: Revised country-specific emission factors for jet kerosene, in [kg/TJ]
1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
NMVOC
Submission 2020 29.1 30.2 30.5 32.4 33.9 34.7 35.1 33.9 33.4 33.2 33.5 36.8 37.7 38.8 39.0 40.9
Submission 2019 19.7 20.0 18.4 20.6 22.2 22.8 22.2 19.7 17.8 18.9 19.8 22.4 23.2 19.4 20.2 22.3
absolute change 9.42 10.14 12.13 11.82 11.67 11.91 12.90 14.22 15.54 14.27 13.74 14.39 14.49 19.37 18.82 18.64
relative change 47.7% 50.7% 66.0% 57.3% 52.6% 52.3% 58.2% 72.2% 87.2% 75.4% 69.4% 64.2% 62.4% 99.9% 93.3% 83.5%
Nitrogen oxides - NOx
Submission 2020 290 319 276 262 258 261 272 283 289 293 295 290 299 296 306 305
Submission 2019 301 332 301 286 285 289 299 310 315 318 323 323 321 326 332 334
absolute change -10.92 -13.06 -24.33 -24.23 -26.74 -27.85 -26.91 -26.19 -26.76 -25.24 -28.13 -33.10 -22.14 -30.48 -26.20 -28.52
relative change -3.63% -3.93% -8.10% -8.47% -9.38% -9.65% -9.01% -8.46% -8.49% -7.93% -8.71% -10.26% -6.89% -9.34% -7.89% -8.54%
Sulphur oxides - SOx
Submission 2020 19.7 19.5 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Submission 2019 25.1 15.2 8.5 6.3 5.9 5.5 5.1 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
absolute change -5.45 4.30 11.08 13.28 13.71 14.13 14.55 14.98 14.98 14.98 14.98 14.98 14.98 14.98 14.98 14.98
relative change -21.7% 28.2% 131% 209% 232% 257% 287% 322% 322% 322% 322% 322% 322% 322% 322% 322%
Black carbon - BC
Submission 2020 1.21 1.20 1.21 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22
Submission 2019 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
absolute change 0.26 0.26 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
relative change 27.76% 27.11% 27.54% 28.52% 28.53% 28.58% 28.67% 28.75% 28.57% 28.56% 28.68% 28.94% 28.96% 28.95% 28.90% 28.94%
Particulate matter - PM
Submission 2020 2.52 2.51 2.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Submission 2019 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97
absolute change 0.55 0.53 0.54 0.56 0.56 0.56 0.57 0.57 0.56 0.56 0.57 0.57 0.57 0.57 0.57 0.57
relative change 27.76% 27.1% 27.54% 28.5% 28.5% 28.6% 28.67% 28.75% 28.57% 28.56% 28.68% 28.94% 28.96% 28.95% 28.90% 28.94%
Carbon monoxide - CO
Submission 2020 203 201 254 262 260 255 250 240 240 234 232 238 241 246 238 238
Submission 2019 182 184 238 254 255 248 240 226 217 215 210 212 214 206 201 199
absolute change 21.2 17.1 16.4 7.80 5.58 6.22 9.74 14.0 23.0 19.0 21.8 25.6 27.3 39.7 36.7 39.1
relative change 11.6% 9.3% 6.9% 3.1% 2.2% 2.5% 4.1% 6.2% 10.6% 8.9% 10.3% 12% 12.7% 19.2% 18.3% 19.7%

Furthermore, all country-specific emission factorsapplied for aviation gasoline have been revised widely based on better knowlegde but with no significant impact on the emission inventory.

Table 7: Revised country-specific emission factors for aviation gasoline, in [kg/TJ]
NMVOC
Submission 2020 612 622 608 616 614 612 612 615 612 622 619 621 619 618 619 614
Submission 2019 181 182 179 177 175 174 177 178 180 186 186 186 184 183 187 187
absolute change 431 440 429 439 439 437 435 436 432 436 433 435 434 435 432 426
relative change 238% 242% 239% 248% 250% 251% 245% 245% 241% 235% 233% 234% 235% 237% 231% 228%
Nitrogen oxides - NOx
Submission 2020 126 128 125 126 125 125 125 125 124 128 127 128 127 126 127 125
Submission 2019 279 275 284 292 298 301 291 287 283 263 262 261 266 270 257 257
absolute change -153 -147 -159 -166 -173 -176 -166 -162 -159 -135 -135 -133 -139 -144 -129 -131
relative change -54.8% -53.4% -56.0% -56.8% -58.0% -58.6% -56.9% -56.3% -56.1% -51.4% -51.4% -51.1% -52.3% -53.3% -50.4% -51.2%
Sulphur oxides - SOx
Submission 2020 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
Submission 2019 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
absolute change -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05
relative change -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5% -9.5%
Black carbon - BC
Submission 2020 1.12 1.13 1.12 1.18 1.16 1.16 1.12 1.17 1.18 1.14 1.12 1.13 1.12 1.16 1.11 1.05
Submission 2019 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
absolute change 1.05 1.06 1.05 1.11 1.09 1.09 1.05 1.10 1.11 1.07 1.06 1.06 1.05 1.09 1.04 0.98
relative change 1521% 1536% 1527% 1616% 1580% 1585% 1529% 1600% 1616% 1547% 1532% 1538% 1525% 1583% 1508% 1428%
Particulate matter - PM
Submission 2020 7.45 7.52 7.48 7.89 7.72 7.74 7.49 7.81 7.89 7.57 7.50 7.53 7.47 7.73 7.39 7.02
Submission 2019 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
absolute change 6.99 7.06 7.02 7.43 7.26 7.28 7.03 7.35 7.43 7.11 7.04 7.07 7.01 7.27 6.93 6.57
relative change 1521% 1536% 1527% 1616% 1580% 1585% 1529% 1600% 1616% 1547% 1532% 1538% 1525% 1583% 1508% 1428%
Carbon monoxide - CO
Submission 2020 20,728 21,069 20,855 20,973 21,124 21,248 21,122 21,229 21,326 21,339 21,463 21,389 21,513 21,555 21,468 21,944
Submission 2019 14,951 15,047 14,832 14,644 14,479 14,421 14,648 14,750 14,853 15,354 15,384 15,406 15,269 15,174 15,502 15,503
absolute change 5,777 6,022 6,023 6,329 6,645 6,827 6,474 6,479 6,473 5,985 6,079 5,983 6,244 6,381 5,966 6,441
relative change 38.6% 40.0% 40.6% 43.2% 45.9% 47.3% 44.2% 43.9% 43.6% 39.0% 39.5% 38.8% 40.9% 42.1% 38.5% 41.5%

For more information on recalculated emission estimates for Base Year and 2017, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

FAQs

Why are emissions from aviation gasoline reported using a Tier 1 approach whereas for jet kerosene Tier 2a has been applied?

For reporting emissions from the cosumption of jet kerosene, the party uses an annual split factor provided by Eurocontrol to devide the total amount of kerosene used (from Energy Balances & Official oil data for the Federal Republic of Germany) onto national and international civil aviation. For aviation gasoline, such split factor does not exist. - Furthermore, the deviation of kerosene used onto flight stages LTO and Cruise has been carried out using data on numbers of take-offs from German airports provided by the German Federal Statistical Office. At the moment, such data is not available for aircraft using aviation gasoline.

On which basis does the party estimate the reported lead emissions from aviation gasoline?

assumption by party: aviation gasoline = AvGas 100 LL
(AvGas 100 LL is the predominant sort of aviation gasoline in Western Europe)1
lead content of AvGas 100 LL: 0.56 g lead/liter (as tetra ethyl lead)2

The applied procedure is similar to the one used for calculating lead emissions from leaded gasoline used in road transport. (There, in contrast to aviation gasoline, the lead content constantly declined resulting in a ban of leaded gasoline in 1997.)

On which basis does the party estimate the reported TSP emissions from aviation gasoline?

The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for lead: EF(TSP) = 1.6 x EF(Pb).
The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport.


Bibliography
1. Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.
2. Knörr et al. (2019c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) 2018 - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2019.
3. Gores (2019): Inventartool zum deutschen Flugverkehrsinventar 1990-2018, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2019.
4. EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation/view; Copenhagen, 2019.
5. Eurocontrol (2019): Advanced emission model (AEM); https://www.eurocontrol.int/model/advanced-emission-model; 2019
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License